Quadruple Attention in Many-body Systems for Accurate Molecular Property Predictions

Published in International Conference on Machine Learning(ICML), 2025

While Graph Neural Networks and Transformers have shown promise in predicting molecular properties, they struggle with directly modeling complex many-body interactions. Current methods often approximate interactions like three- and four-body terms in message passing, while attention-based models, despite enabling direct atom communication, are typically limited to triplets, making higher-order interactions computationally demanding. To address the limitations, we introduce MABNet, a geometric attention framework designed to model four-body interactions by facilitating direct communication among atomic quartets. This approach bypasses the computational bottlenecks associated with traditional triplet-based attention mechanisms, allowing for the efficient handling of higher-order interactions. MABNet achieves state-of-the-art performance on benchmarks like MD22 and SPICE. These improvements underscore its capability to accurately capture intricate many-body interactions in large molecules. By unifying rigorous many-body physics with computational efficiency, MABNet advances molecular simulations for applications in drug design and materials discovery, while its extensible framework paves the way for modeling higher-order quantum effects.

Download Paper | Download Bibtex